Mitigation of CO₂ Geological Use and Storage

Bill Gunter
Alberta Research Council
Edmonton, Alberta T6N 1E4
Canada

The Climate Change Debate

- Is there global warning?
- If so, are Greenhouse Gases the main culprit?

Geochemical Cycle of Carbon Dioxide

Canada's Kyoto Challenge

GHG Control Technologies

Adaptation – Areas Affected

- Forests
- Deserts
- Glaciers
- Mountain Regions
- Lakes, Streams and Wetlands
- Coastal Systems and Oceans
- Grasslands

Adaptation - Disciplines

- Water Resource Management
- Food and Fiber (Agriculture)
- Forest Products
- Fisheries
- Weather
- Human Health

Adaptation - Solutions

- Relocation of populations
- Remanage land areas
- Prevent flooding by building dikes
- Change agriculture patterns
- Provide special health care for affected areas
- Economic assistance
- Practice conservation

Greenhouse Gas Mitigation Approach

Atmosphere

CO₂ Mitigation Options

Decarbonization Lower C/H Ratio Nuclear Renewables

Improved Efficiency

Demand Side

Supply Side

Sequestration

Direct Capture

Natural Sinks

Sustainable Growth Scenario

(Shell International)

exajoules

Alberta

Costs and CO₂ Emissions in Electricity

Integrated System for Electricity, H₂ and Heat

- Gains in efficiency (Combined Cycle, Cogeneration)
- Decreases on environmental liability (CO₂, Sox, Nox, Particulates)
- Central Power versus Distributed Power

Zero Emission Power Plants

Zero Emission Power Plants

Two CO₂ molecules displace one CH₄ molecule in the coal bed

Figure 1. Classes of Carbon Dioxide Sinks

Decarbonization of Fossil Fuels

Products

- Of High Value -

Surface Storage

Biosphere Sinks

Sink	Global (Gt CO ₂)	Capacities -Canada (Mt CO ₂)	Capacities -Alberta (Mt CO ₂)	Retention -Time (Years)	Seq. Rates -Alberta (Mt CO ₂ /yr)
Oceans	4400	No Estimate	Not Applicable	<1000	
Forestry	220-319	4,070	367	50	3.7-7.3

172-367

165-447 484 - 1,034

Agriculture

17.2-36.7

10s

Subsurface Storage

Geosphere Sinks

Sink	Global (Gt CO ₂)	Capacities -Canada (Mt CO ₂)	Capacities -Alberta (Mt CO ₂)	Retention -Time (Years)	Storage Rates -Alberta (Mt CO ₂ /yr)
EOR	238	330	220	10s	2.2
Coalbeds	300-964	14,680- 28,600	18,350	100,000s- 1,000,000s	18
Deleted Oil & Gas Reservoirs	630	18,350	12,850	100,000s- 1,000,000s	13
Deep Aquifers	183- 51,333	No Estimate	19,800	100,000s- 1,000,000s	20

Sedimentary Basins, Fossil Fuels, Greenhouse Gases and Geological Storage: A Serendipitous Association

- Fossil fuels (oil,gas and coal) are found in sedimentary basins
- The fluid fossil fuels are transported to traps through aquifers
- During conversion of the fossil fuels to energy. Greenhouse gases are created
- Extraction of the fossil fuels have created new storage space (in the subsurface) which can be used for geological storage of greenhouse gases

Types of Sedimentary Basins

Suitability of Sedimentary Basins to Carbon Dioxide Disposal

Fluid Flow Type

Topographic

Mixed

Compaction

Risk of Leakage High

Ocean sag and wrench trench associated active margin

Intermediate

Divergent / Passive Margin

Interior Rift

Low

Cratronic Foreland

High

Intermediate

Low

Degree of Sediment Compaction

Geological Storage Options for Alberta

- Deep Aquifers
- Depleted Oil and Gas (O&G) Reservoirs
- Depleted Coalbed Methane (CBM)
 Reservoirs
- Enhanced O&G Recovery
- Enhanced CBM Recovery

Western Canada Sedimentary Basin

Geological Storage

CO₂ Injection into Aquifers

CO₂ Use and Disposal in the Alberta Basin

- Industrial Users
- Enhanced Oil Recovery
- CO₂-H₂S Injection in Depleted Reservoirs
- CO₂-H₂S Injection in Aquifers

AGS

Aquifers

- Injection technology is mature on a small scale
- Ubiquitous
- Need database for hydrology, capacities, locations, stability and ranking
- Treat oil and gas as related to aquifers
- Commercial Projects
 - Sleipner, Norway
 - Acid gas disposal, Alberta

Enhanced Oil Recovery (CO₂ Miscible Flooding)

DRIVE WATER

OIL BANK/MISCIBLE FRONT (4)

CO₂ Injection for Enhanced Oil Recovery

PanCanadian, Canada

Schematic East-West Geological Cross-Section

Enhanced Oil Recovery Depleted Oil Reservoirs

- Production technology is mature
- Focus on monitoring and maximizing CO₂
 uptake
- Value added
- Proposed commercial projects
 - 1. Weyburn project, Saskatchewan
 - 2. BP project, Alaskan North Slope

Depleted Gas Reservoirs

Storage technology is mature

Nothing required at this time

Currently used to store Natural Gas

Sorption Data for Different Pure Gases

Gas Supply Evaluation

Natural Gas —— Heating

- CBM Heating + Electricity
- ECBM Enerplex(Electricity +H₂)

 Increasing
 - Methanogensis + ECBM

Sustainability

2100

Increasing

Enhanced Coalbed Methane

- Technology is immature
- Requires technical demonstration and basic research
- Value added
- Demonstration Projects
 - San Juan Basin, New Mexico
 - Fenn-Big Valley, Alberta

Emissions & Greenhouse Gas Storage Capacity in the Alberta Sedimentary Basin

Opportunities for Geological Storage of CO₂ in Sedimentary Basins

- Depleted Oil Reservoirs ← → Enhanced Recovery (EOR)
- Depleted Coalbed Methane (CBM) Reservoir ← Enhanced CBM
- Depleted Gas Reservoirs ← → Enhanced Gas Recovery (EGR)
- Aquifers

Table 3. Assessment of other issues related to the use of

biological and geologic sinks for carbon sequestration				
Sink	Environmental Impact	Stability/Security	Verifiability	
Biological Sinks				
Ocean	Negative	L	M	
Forests	Positive	L-M	L	
Agriculture	Positive	L-M	L	
Geological Sinks				

H

Geological Sinks		
Enhanced Oil Recovery	Neutral	M
Coal Beds	Neutral	Н

Depleted Oil &

H H Η

H

Gas Reservoirs Neutral Η Deep Aquifers **Note:** L=Low: M=Medium: H=High:

Neutral

Energy Debate (Economics vs Environment)

- Energy Source (fossil fuels, nuclear, renewables)
- Energy Conversion (H₂, electricity, heat, pressure)
- Energy Use (central vs distributed, conservation)
- Land Use
- Capacity Building

"I think the reason God made economists is to make sure weather forecastors don't look so bad"

Gordon Thiessen, Bank of Canada Governor

"Making the Energy Transition from Combustion to Zero Emissions"

"Storage" not "Sequester" "Sequester" Definition

- 1. Oxford Dictionary: seclude; isolate; or set apart; separate and reject
- 2. American Heritage Dictionary: segregate or set apart

Segregate – to separate or isolate from others or from a main body or group

3. Webster Dictionary: to remove or separate

